Este blog es un espacio para aprender más de matemáticas....sobre los distintos temas relacionados con esta y las distintas cosas en que se usan
jueves, 31 de marzo de 2011
GRANDES MATEMATICOS EN LA HISTORIA
Grandes matemáticos de la historia
Algunos de los matemáticos más emblemáticos han sido:
Algunos de los matemáticos más emblemáticos han sido:
- Tales de Mileto: (hacia el 600 a. C.). Matemático y geómetra griego. Considerado uno de los Siete Sabios de Grecia.
- Inventor del Teorema de Tales, que establece que, si a un triángulo cualquiera le trazamos una paralela a cualquiera de sus lados, obtenemos dos triángulos semejantes. Dos triángulos son semejantes si tienen los ángulos iguales y sus lados son proporcionales, es decir, que la igualdad de los cocientes equivale al paralelismo. Este teorema establece así una relación entre el álgebra y la geometría.
- Pitágoras: (582-500 a. C.). Fundador de la escuela pitagórica, cuyos principios se regían por el amor a la sabiduría, a las matemáticas y música.
- Inventor del Teorema de Pitágoras, que establece que, en un triángulo rectángulo, el cuadrado de la hipotenusa (el lado opuesto al ángulo recto) es igual a la suma de los cuadrados de los dos catetos (los dos lados del triángulo menores que la hipotenusa y que conforman el ángulo recto). Además del teorema anteriormente mencionado, también inventó una tabla de multiplicar.
- Euclides: (aproximadamente 365-300 a. C.). Sabio griego, cuya obra "Elementos de Geometría" está considerada como el texto matemático más importante de la historia.
- Los teoremas de Euclides son los que generalmente se aprenden en la escuela moderna. Por citar algunos de los más conocidos:
- - La suma de los ángulos interiores de cualquier triángulo es 180°.
- - En un triángulo rectángulo el cuadrado de la hipotenusa es igual a la suma de los cuadrados de los catetos, que es el famoso teorema de Pitágoras.
- Arquímedes: (287-212 a. C.). Fue el matemático más importante de la Edad Antigua. También conocido por una de sus frases: "Eureka, eureka, lo encontré". Su mayor logro fue el descubrimiento de la relación entre la superficie y el volumen de una esfera y el cilindro que la circunscribe. Su principio más conocido fue el Principio de Arquímedes, que consiste en que todo cuerpo sumergido en un fluido experimenta un empuje vertical y hacia arriba igual al peso de fluido que desaloja.
- Fibonacci: (1170-1240). Matemático italiano que realizó importantísimas aportaciones en los campos matemáticos del álgebra y la teoría de números.Famoso por haber difundido en Europa el sistema de numeración arábiga actualmente utilizado. Descubridor de la Sucesión de Fibonacci, que consiste en una sucesión infinita de números naturales.
- René Descartes: (1596-1650). Matemático francés, que escribió una obra sobre la teoría de las ecuaciones, en la cual se incluía la regla de los signos, para saber el número de raíces positivas y negativas de una ecuación. Inventó una de las ramas de las matemáticas, la geometría analítica.
- Isaac Newton: (1643-1727). Matemático inglés, autor de los Philosophiae naturalis principia mathematica. Abordó el teorema del binomio, a partir de los trabajos de John Wallis, y desarrolló un método propio denominado cálculo de fluxiones. Abordó el desarrollo del cálculo a partir de la geometría analítica desarrollando un enfoque geométrico y analítico de las derivadas matemáticas aplicadas sobre curvas definidas a través de ecuaciones.
- Gottfried Leibniz: (1646-1716). Matemático alemán, desarrolló, con independencia de Newton, el cálculo infinitesimal. Creó la notación y el corpus conceptual del cálculo que se usa en la actualidad. Realizó importantes aportaciones en el campo de la teoría de los números y la geometría analítica.
- Galileo Galilei: (1564-1642). Matemático italiano, cuyo principal logro fue el crear un nexo de unión entre las matemáticas y la mecánica. Fue el descubridor de la ley de la isocronía de los péndulos. Se inspira en Pitágoras, Platón y Arquímedes y fue contrario a Aristóteles.
- Blaise Pascal: (1623-1662). Matemático francés que formuló uno de los teoremas básicos de la geometría proyectiva, que se denominó como Teorema de Pascal y que él mismo llamo Teoría matemática de la probabilidad.
- Leonhard Euler: (1707-1783). Matemático suizo que realizó importantes descubrimientos en el campo del cálculo y la teoría de grafos. También introdujo gran parte de la moderna terminología y notación matemática, particularmente para el área del análisis matemático, como por ejemplo la noción de función matemática.
- Paolo Ruffini: (1765-1822). Matemático italiano que estableció las bases de la teoría de las transformaciones de ecuaciones, descubrió y formuló la regla del cálculo aproximado de las raíces de las ecuaciones, y su más importante logro, inventó lo que se conoce como Regla de Ruffini, que permite hallar los coeficientes del resultado de la división de un polinomio por el binomio (x - r).
- Joseph-Louis de Lagrange: (1736-1813). Matemático franco-italiano, considerado como uno de los más importantes de la historia, realizó importantes contribuciones en el campo del cálculo y de la teoría de los números. Fue el padre de la mecánica analítica, a la que dio forma diferencial, creó la disciplina del análisis matemático, abrió nuevos campos de estudio en la teoría de las ecuaciones diferenciales y contribuyó al establecimiento formal del análisis numérico como disciplina.
- Carl Friedrich Gauss: (1777-1855). Matemático alemán al que se le conoce como "el príncipe de las matemáticas". Ha contribuido notablemente en varias áreas de las matemáticas, en las que destacan la teoría de números, el análisis matemático, la geometría diferencial. Fue el primero en probar rigurosamente el Teorema Fundamental del Álgebra. Inventó lo que se conoce como Método de Gauss, que lo utilizó para resolver sistemas de tres ecuaciones lineales con tres incógnitas.
- Pierre-Simon Laplace: (1749-1827). Matemático francés que realizó importantes aportaciones a la teoría de Probabilidades, desarrolló la Ecuación de Laplace,e inventó la Transformada de Laplace, que tiene importantes aplicaciones en la electrónica. Fue un ferviente creedor del Determinismo científico.
- Augustin Louis Cauchy: (1789-1857). Matemático francés, pionero en el análisis matemático y la teoría de grupos. Ofreció la primera definición formal de función, límite y continuidad. También trabajó la teoría de los determinantes, probabilidad, el cálculo complejo, y las series.
- Jean-Baptiste Joseph Fourier: (1768-1830). Matemático francés. Estudió la transmisión de calor, desarrollando para ello la Transformada de Fourier; de esta manera, extendió el concepto de función e introdujo una nueva rama dentro de la teoría de las ecuaciones diferenciales
MATEMATICA DE LA CHINA CLASICA(C.500 AC-1300 DC)
En China, el emperador Qin Shi Huang (Shi Huang-ti) ordenó en 212 AC que todos los libros de fuera del estado de Qin fueran quemados. El mandato no fue obedecido por todo el mundo, pero como consecuencia se conoce muy poco acerca de la matemática en la China ancestral.
Desde la Dinastía Zhou, a partir del 1046 AC, el libro de matemáticas más antiguo que sobrevivió a la quema fue el I Ching, que usa trigramas y hexagramas para propósitos filosóficos, matemáticos y místicos. Estos objetos matemáticos están compuestos de líneas enteras o divididas llamadas yin (femenino) y yang (masculino), respectivamente (véase Secuencia del Rey Wen).
La obra más antigua sobre geometría en China viene de canon filosófico mohista, hacia el 330 a. C., recopilado por los acólitos de Mozi (470-390 a.c.). El Mo Jing describió varios aspectos de muchos campos relacionados con la física así como proporcionó una pequeña dosis de matemáticas.
Después de la quema de libros, la dinastía Han (202 a.C - 220 d.C) produjo obras matemáticas que presumiblemente abundaban en trabajos que se habían perdido. La más importante de estas es Las nueve lecciones sobre arte matemático, cuyo título completo apareció hacia el 179 d. C., pero existía anteriormente en parte bajo otros títulos. La obra consiste en 246 problemas en palabras que involucran agricultura, negocios, usos geométricos para establecer las dimensiones de las pagodas, ingeniería, agrimensura y nociones sobre triángulos rectángulos y π. También se usa el Principio de Cavalieri sobre volúmenes más de mil años antes de que el propio Cavalieri lo formulara en Occidente. Se crearon pruebas sobre el Teorema de Pitágoras y una formulación matemática de la eliminación de Gauss-Jordan. Liu Hui hizo un comentario de la obra hacia el siglo III d. C.
En resumen, las obras matemáticas del Han astrónomo e inventor Zhang Heng (78–139 d. C.) contenían una formulación para pi también, la cual difería de los cálculos de Liu Hui. Zhang Heng usó su fórmula de pi para encontrar volúmenes esféricos. Estaban también los trabajos escritos del matemático y teórico de la música Jing Fang (78–37 a. C.); mediante el uso de la coma pitagórica, Jing observó que 53 quintas justas se aproximan a 31 octavas. Esto llevaría más tarde al descubrimiento del temperamento igual que divide a la octava en 53 partes iguales y no volvería a ser calculado con tanta precisión hasta que en el siglo XVII lo hiciese el alemán Nicholas Mercator.
Los chinos también hicieron uso de diagramas combinatorios complejos conocidos como cuadrado mágico y círculo mágico, descritos en tiempos ancestrales y perfeccionados por Yang Hui (1238–1398 d. C.).
Zu Chongzhi (siglo V) de las Dinastías del Sur y del Norte calculó el valor de π hasta siete lugares decimales, lo que daba lugar al valor de π más exacto durante casi 1000 años.
Incluso después de que las matemáticas europeas comenzasen a florecer durante el Renacimiento, las matemáticas chinas y europeas mantuvieron tradiciones separadas, con un significativo declive de las chinas, hasta que misioneros jesuitas como Matteo Ricci intercambiaron las ideas matemáticas entre las dos culturas entre los siglos XVI y XVIII.
IMAGEN:
Desde la Dinastía Zhou, a partir del 1046 AC, el libro de matemáticas más antiguo que sobrevivió a la quema fue el I Ching, que usa trigramas y hexagramas para propósitos filosóficos, matemáticos y místicos. Estos objetos matemáticos están compuestos de líneas enteras o divididas llamadas yin (femenino) y yang (masculino), respectivamente (véase Secuencia del Rey Wen).
La obra más antigua sobre geometría en China viene de canon filosófico mohista, hacia el 330 a. C., recopilado por los acólitos de Mozi (470-390 a.c.). El Mo Jing describió varios aspectos de muchos campos relacionados con la física así como proporcionó una pequeña dosis de matemáticas.
Después de la quema de libros, la dinastía Han (202 a.C - 220 d.C) produjo obras matemáticas que presumiblemente abundaban en trabajos que se habían perdido. La más importante de estas es Las nueve lecciones sobre arte matemático, cuyo título completo apareció hacia el 179 d. C., pero existía anteriormente en parte bajo otros títulos. La obra consiste en 246 problemas en palabras que involucran agricultura, negocios, usos geométricos para establecer las dimensiones de las pagodas, ingeniería, agrimensura y nociones sobre triángulos rectángulos y π. También se usa el Principio de Cavalieri sobre volúmenes más de mil años antes de que el propio Cavalieri lo formulara en Occidente. Se crearon pruebas sobre el Teorema de Pitágoras y una formulación matemática de la eliminación de Gauss-Jordan. Liu Hui hizo un comentario de la obra hacia el siglo III d. C.
En resumen, las obras matemáticas del Han astrónomo e inventor Zhang Heng (78–139 d. C.) contenían una formulación para pi también, la cual difería de los cálculos de Liu Hui. Zhang Heng usó su fórmula de pi para encontrar volúmenes esféricos. Estaban también los trabajos escritos del matemático y teórico de la música Jing Fang (78–37 a. C.); mediante el uso de la coma pitagórica, Jing observó que 53 quintas justas se aproximan a 31 octavas. Esto llevaría más tarde al descubrimiento del temperamento igual que divide a la octava en 53 partes iguales y no volvería a ser calculado con tanta precisión hasta que en el siglo XVII lo hiciese el alemán Nicholas Mercator.
Los chinos también hicieron uso de diagramas combinatorios complejos conocidos como cuadrado mágico y círculo mágico, descritos en tiempos ancestrales y perfeccionados por Yang Hui (1238–1398 d. C.).
Zu Chongzhi (siglo V) de las Dinastías del Sur y del Norte calculó el valor de π hasta siete lugares decimales, lo que daba lugar al valor de π más exacto durante casi 1000 años.
Incluso después de que las matemáticas europeas comenzasen a florecer durante el Renacimiento, las matemáticas chinas y europeas mantuvieron tradiciones separadas, con un significativo declive de las chinas, hasta que misioneros jesuitas como Matteo Ricci intercambiaron las ideas matemáticas entre las dos culturas entre los siglos XVI y XVIII.
IMAGEN:
MATEMATICAS ANTIGUAS INDIAS(DEL 900 A.C.AL 200 D.C)
Las matemáticas védicas comenzaron en la temprana Edad del Hierro, con el Shatapatha Brahmana (hacia el siglo IX a. C.), donde se aproxima el valor de π con dos decimales.[10] y el Sulba Sutras (hacia el 800–500 a. C.) que eran textos de geometría que usaban números irracionales, números primos, regla de tres y raíces cúbicas; cálculo de la raíz cuadrada de 2 con cinco decimales; un método para cuadrar el círculo; resolución de ecuaciones lineales y cuadráticas; desarrollo algebraico de ternas pitagóricas y enunciado y demostración numérica del teorema de Pitágoras.
Pāṇini (hacia el siglo V a.C.) formuló las reglas gramaticales para el sánscrito. Su notación fue similar a la notación matemática moderna y usaba "metarreglas", transformaciones y recursiones con tal sofisticación que su gramática tenía el poder de cálculo equivalente a una máquina de Turing. Pingala (aproximadamente de los siglos III al I a.C.) en su tratado de prosodia usa un dispositivo correspondiente a un sistema binario de numeración. Su discusión sobre la combinatoria de métricas musicales corresponde al teorema binomial. La obra de Pingala también contiene ideas básicas sobre los números de Fibonacci, llamados mātrāmeru. La escritura Brāhmī se desarrolló al menos desde la dinastía Maurya, en el siglo IV a. C., con evidencias arqueológicas recientes que hicieron retroceder la fecha hacia el 600 a. C. Los numerales brahmi datan del siglo III a. C.
Entre el 400 a. C. y el 200 a. C., los matemáticos Jaina comienzan el estudio de las matemáticas para el exclusivo propósito de las matemáticas. Ellos fueron los primeros en desarrollar los números transfinitos, la teoría de conjuntos, los logaritmos, leyes fundamentales de los índices, ecuaciones cúbicas y cuárticas, sucesiones y progresiones, permutaciones y combinaciones, cuadrados y extracción de la raíz cuadrada y potencias finitas e infinitas. El Manuscrito Bakhshali, escrito entre el 200 a.C y el 200 d. C., incluía soluciones de ecuaciones lineales con más de cinco incógnitas, la solución de la ecuación cuadrática, progresiones aritméticas y geométricas, series compuestas, ecuaciones cuadráticas indeterminadas, ecuaciones simultáneas y el uso del cero y los números negativos. También pudieron encontrarse cálculos exactos de números irracionales, que incluían raíces cuadradas de números tan grandes como un millón y con once decimales.
IMAGERN:
Pāṇini (hacia el siglo V a.C.) formuló las reglas gramaticales para el sánscrito. Su notación fue similar a la notación matemática moderna y usaba "metarreglas", transformaciones y recursiones con tal sofisticación que su gramática tenía el poder de cálculo equivalente a una máquina de Turing. Pingala (aproximadamente de los siglos III al I a.C.) en su tratado de prosodia usa un dispositivo correspondiente a un sistema binario de numeración. Su discusión sobre la combinatoria de métricas musicales corresponde al teorema binomial. La obra de Pingala también contiene ideas básicas sobre los números de Fibonacci, llamados mātrāmeru. La escritura Brāhmī se desarrolló al menos desde la dinastía Maurya, en el siglo IV a. C., con evidencias arqueológicas recientes que hicieron retroceder la fecha hacia el 600 a. C. Los numerales brahmi datan del siglo III a. C.
Entre el 400 a. C. y el 200 a. C., los matemáticos Jaina comienzan el estudio de las matemáticas para el exclusivo propósito de las matemáticas. Ellos fueron los primeros en desarrollar los números transfinitos, la teoría de conjuntos, los logaritmos, leyes fundamentales de los índices, ecuaciones cúbicas y cuárticas, sucesiones y progresiones, permutaciones y combinaciones, cuadrados y extracción de la raíz cuadrada y potencias finitas e infinitas. El Manuscrito Bakhshali, escrito entre el 200 a.C y el 200 d. C., incluía soluciones de ecuaciones lineales con más de cinco incógnitas, la solución de la ecuación cuadrática, progresiones aritméticas y geométricas, series compuestas, ecuaciones cuadráticas indeterminadas, ecuaciones simultáneas y el uso del cero y los números negativos. También pudieron encontrarse cálculos exactos de números irracionales, que incluían raíces cuadradas de números tan grandes como un millón y con once decimales.
IMAGERN:
LOS INICIOS DE LA MATEMATICA
Los inicios de la matemática
Mucho antes de los primeros registros escritos, hay dibujos que indican algún conocimiento de matemáticas elementales y de la medida del tiempo basada en las estrellas. Por ejemplo, los paleontólogos han descubierto rocas de ocre en una caverna de Sudáfrica de, aproximadamente, 70.000 años de antigüedad, que están adornados con hendiduras en forma de patrónes geométricos.[2] También se descubrieron artefactos prehistóricos en África y Francia, datados entre el 35.000 y el 20.000 a.C.,[3] que sugieren intentos iniciales de cuantificar el tiempo.[4]
Hay evidencias de que las mujeres inventaron una forma de llevar la cuenta de su ciclo menstrual: de 28 a 30 marcas en un hueso o piedra, seguidas de una marca distintiva. Más aún, los cazadores y pastores empleaban los conceptos de uno, dos y muchos, así como la idea de ninguno o cero, cuando hablaban de manadas de animales.[5] [6]
El hueso de Ishango, encontrado en las inmediaciones del río Nilo, al noreste del Congo, puede datar de antes del 20.000 a. C. Una interpretación común es que el hueso supone la demostración más antigua conocida[7] de una secuencia de números primos y de la multiplicación en el Antiguo Egipto. En el periodo predinástico de Egipto del 5º milenio a.C. se representaban pictóricamente diseños espaciales geométricos. Se ha afirmado que los monumentos megalíticos en Inglaterra y Escocia, del 3er milenio a.C., incorporan ideas geométricas tales como círculos, elipses y ternas pitagóricas en su diseño.[8]
Las primeras matemáticas conocidas en la historia de la India datan del 3000 - 2600 a. C., en la Cultura del Valle del Indo, (civilización Harappa) del norte de la India y Pakistán. Esta civilización desarrolló un sistema de medidas y pesas uniforme que usaba el sistema decimal, una sorprendentemente avanzada tecnología con ladrillos para representar razones, calles dispuestas en perfectos ángulos rectos y una serie de formas geométricas y diseños, incluyendo cuboides, barriles, conos, cilindros y diseños de círculos y triángulos concéntricos y secantes. Los instrumentos matemáticos empleados incluían una exacta regla decimal con subdivisiones pequeñas y precisas, unas estructuras para medir de 8 a 12 secciones completas del horizonte y el cielo y un instrumento para la medida de las posiciones de las estrellas para la navegación. La escritura hindú no ha sido descifrada todavía, de ahí que se sepa muy poco sobre las formas escritas de las matemáticas en Harappa. Hay evidencias arqueológicas que han llevado a algunos a sospechar que esta civilización usaba un sistema de numeración de base octal y tenían un valor para π, la razón entre la longitud de la circunferencia y su diámetro.[9] [10]
Por su parte, las primeras matemáticas en China datan de la Dinastía Shang (1600 - 1046 a.C ) y consisten en números marcados en un caparazón de tortuga [1] [2]. Estos números fueron representados mediante una notación decimal. Por ejemplo, el número 123 se escribía, de arriba a abajo, como el símbolo para el 1 seguido del símbolo para 100, luego el símbolo para el 2 seguido del símbolo para 10 y, por último, el símbolo para el 3. Este era el sistema de numeración más avanzado en su tiempo y permitía hacer cálculos para usarlos con el suanpan o el ábaco chino. La fecha de invención del suanpan no se conoce con certeza, pero la mención escrita más antigua data del 190 d. C., en Notas suplementarias sobre el Arte de las Cifras, de Xu Yue's.
Mucho antes de los primeros registros escritos, hay dibujos que indican algún conocimiento de matemáticas elementales y de la medida del tiempo basada en las estrellas. Por ejemplo, los paleontólogos han descubierto rocas de ocre en una caverna de Sudáfrica de, aproximadamente, 70.000 años de antigüedad, que están adornados con hendiduras en forma de patrónes geométricos.[2] También se descubrieron artefactos prehistóricos en África y Francia, datados entre el 35.000 y el 20.000 a.C.,[3] que sugieren intentos iniciales de cuantificar el tiempo.[4]
Hay evidencias de que las mujeres inventaron una forma de llevar la cuenta de su ciclo menstrual: de 28 a 30 marcas en un hueso o piedra, seguidas de una marca distintiva. Más aún, los cazadores y pastores empleaban los conceptos de uno, dos y muchos, así como la idea de ninguno o cero, cuando hablaban de manadas de animales.[5] [6]
El hueso de Ishango, encontrado en las inmediaciones del río Nilo, al noreste del Congo, puede datar de antes del 20.000 a. C. Una interpretación común es que el hueso supone la demostración más antigua conocida[7] de una secuencia de números primos y de la multiplicación en el Antiguo Egipto. En el periodo predinástico de Egipto del 5º milenio a.C. se representaban pictóricamente diseños espaciales geométricos. Se ha afirmado que los monumentos megalíticos en Inglaterra y Escocia, del 3er milenio a.C., incorporan ideas geométricas tales como círculos, elipses y ternas pitagóricas en su diseño.[8]
Las primeras matemáticas conocidas en la historia de la India datan del 3000 - 2600 a. C., en la Cultura del Valle del Indo, (civilización Harappa) del norte de la India y Pakistán. Esta civilización desarrolló un sistema de medidas y pesas uniforme que usaba el sistema decimal, una sorprendentemente avanzada tecnología con ladrillos para representar razones, calles dispuestas en perfectos ángulos rectos y una serie de formas geométricas y diseños, incluyendo cuboides, barriles, conos, cilindros y diseños de círculos y triángulos concéntricos y secantes. Los instrumentos matemáticos empleados incluían una exacta regla decimal con subdivisiones pequeñas y precisas, unas estructuras para medir de 8 a 12 secciones completas del horizonte y el cielo y un instrumento para la medida de las posiciones de las estrellas para la navegación. La escritura hindú no ha sido descifrada todavía, de ahí que se sepa muy poco sobre las formas escritas de las matemáticas en Harappa. Hay evidencias arqueológicas que han llevado a algunos a sospechar que esta civilización usaba un sistema de numeración de base octal y tenían un valor para π, la razón entre la longitud de la circunferencia y su diámetro.[9] [10]
Por su parte, las primeras matemáticas en China datan de la Dinastía Shang (1600 - 1046 a.C ) y consisten en números marcados en un caparazón de tortuga [1] [2]. Estos números fueron representados mediante una notación decimal. Por ejemplo, el número 123 se escribía, de arriba a abajo, como el símbolo para el 1 seguido del símbolo para 100, luego el símbolo para el 2 seguido del símbolo para 10 y, por último, el símbolo para el 3. Este era el sistema de numeración más avanzado en su tiempo y permitía hacer cálculos para usarlos con el suanpan o el ábaco chino. La fecha de invención del suanpan no se conoce con certeza, pero la mención escrita más antigua data del 190 d. C., en Notas suplementarias sobre el Arte de las Cifras, de Xu Yue's.
LA HISTORIA DE LA MATEMATICA
La Historia de la Matemática es un área de estudio que abarca las investigaciones sobre los orígenes de los descubrimientos en matemáticas y, en menor grado, de los métodos matemáticos y la notación.[cita requerida]
Antes de la edad moderna y la difusión del conocimiento a lo largo del mundo, los ejemplos escritos de nuevos desarrollos matemáticos salían a la luz sólo en unos pocos escenarios. Los textos matemáticos más antiguos disponibles son el Plimpton 322 (matemáticas en Babilonia c. 1900 a. C.), el papiro de Moscú (matemáticas en el Antiguo Egipto c. 1850 a. C.), el papiro de Rhind (Matemáticas en Egipto c. 1650 a. C.), y el Shulba Sutras (Matemáticas en la India c. 800 a. C.). Todos estos textos tratan sobre el teorema de Pitágoras, que parece ser el más antiguo y extendido desarrollo matemático después de la aritmética básica y la geometría.
Tradicionalmente se ha considerado que la matemática, como ciencia, surgió con el fin de hacer los cálculos en el comercio, para medir la Tierra y para predecir los acontecimientos astronómicos. Estas tres necesidades pueden ser relacionadas en cierta forma a la subdivisión amplia de la matemática en el estudio de la estructura, el espacio y el cambio.[cita requerida]
Las matemáticas egipcias y babilónicas fueron ampliamente desarrolladas por la matemática helénica, donde se refinaron los métodos (especialmente la introducción del rigor matemático en las demostraciones) y se ampliaron los asuntos propios de esta ciencia.[1] Las matemáticas en el Islam, a su vez, desarrollaron y extendieron las matemáticas conocidas por estas civilizaciones ancestrales. Muchos textos griegos y árabes de matemáticas fueron traducidos al latín, lo que llevó a un posterior desarrollo de las matemáticas en la Edad Media.
Desde tiempos ancestrales hasta la Edad Media, las ráfagas de creatividad matemática fueron seguidas, con frecuencia, por siglos de estancamiento. Pero desde el renacimiento italiano, en el siglo XVI, los nuevos desarrollos matemáticos, interactuando con descubrimientos científicos contemporáneos, fueron creciendo exponencialmente hasta el día de hoy
Antes de la edad moderna y la difusión del conocimiento a lo largo del mundo, los ejemplos escritos de nuevos desarrollos matemáticos salían a la luz sólo en unos pocos escenarios. Los textos matemáticos más antiguos disponibles son el Plimpton 322 (matemáticas en Babilonia c. 1900 a. C.), el papiro de Moscú (matemáticas en el Antiguo Egipto c. 1850 a. C.), el papiro de Rhind (Matemáticas en Egipto c. 1650 a. C.), y el Shulba Sutras (Matemáticas en la India c. 800 a. C.). Todos estos textos tratan sobre el teorema de Pitágoras, que parece ser el más antiguo y extendido desarrollo matemático después de la aritmética básica y la geometría.
Tradicionalmente se ha considerado que la matemática, como ciencia, surgió con el fin de hacer los cálculos en el comercio, para medir la Tierra y para predecir los acontecimientos astronómicos. Estas tres necesidades pueden ser relacionadas en cierta forma a la subdivisión amplia de la matemática en el estudio de la estructura, el espacio y el cambio.[cita requerida]
Las matemáticas egipcias y babilónicas fueron ampliamente desarrolladas por la matemática helénica, donde se refinaron los métodos (especialmente la introducción del rigor matemático en las demostraciones) y se ampliaron los asuntos propios de esta ciencia.[1] Las matemáticas en el Islam, a su vez, desarrollaron y extendieron las matemáticas conocidas por estas civilizaciones ancestrales. Muchos textos griegos y árabes de matemáticas fueron traducidos al latín, lo que llevó a un posterior desarrollo de las matemáticas en la Edad Media.
Desde tiempos ancestrales hasta la Edad Media, las ráfagas de creatividad matemática fueron seguidas, con frecuencia, por siglos de estancamiento. Pero desde el renacimiento italiano, en el siglo XVI, los nuevos desarrollos matemáticos, interactuando con descubrimientos científicos contemporáneos, fueron creciendo exponencialmente hasta el día de hoy
martes, 29 de marzo de 2011
lunes, 28 de marzo de 2011
Suscribirse a:
Entradas (Atom)